PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

Domain-Specific Approach to
Software Development for Microcontrollers

Boris Sedov, Sergey Pakharev, Alexey Syschikov, Vera Ivanova
Saint Petersburg State University of Aerospace Instrumentation
Saint-Petersburg, Russia
{boris.sedov, sergey.paharev, alexey.syschikov, vera.ivanova}@guap.ru

Abstract—Microcontrollers are widely used in many areas
of embedded systems, from robotics control systems to smart
homes. The number of different hardware platforms is
increasing with a spread of embedded systems. More and
more users are involved in a software development, including
not qualified programmers. The application of a domain-
specific development technology provides the possibility to
program microcontrollers in terms that are familiar to a user
but not to a microcontroller. The visual representation of
programs ensures the clarity of the processing workflow. A
portability to different hardware platforms allows using the
microcontrollers with different processors from different
manufacturers and an easy switching to the new versions of
microcontrollers. In this paper we present initial steps of
working with VIPE toolset for support microcontrollers
programming for embedded systems.

1. INTRODUCTION

Nowadays microcontrollers have a tendency to enter the
various scopes of activity. Embedded systems, used in
microcontrollers, unite in computing network conceptions,
such as internet of things, internet of energy or internet of
vehicle. In the short term, it is planned to unite all of this
interconnected autonomous environments into common
cyber-physical systems.

Embedded systems perform monitoring and control of
physical components and processes in different fields.
Therefore, more people with different levels of
programming skills will interconnect with them. There is a
need in tools and technologies that will allow creating
applications for such systems to more and more people with
different skills background.

Today there is a tendency to use a visual approach to a
microcontrollers programming. The visual approach has
become very popular due to its low cognitive resistance [1],
which lowers greatly the required minimum level of user
special skills of a microcontrollers programming. Visual
languages can be adapted to different user needs with taking
into account the level of their skills, features of applications
and application domains.

The best-known tool that implements the visual approach
and is designed especifically for a microcontrollers

programming is Lego Mindstorms EV3 programming
software [2] (Fig.1). Modkit [3] (Fig.2), TRIK Studio [4]
(Fig.3) and some other tools are also known quite well.
However, a small number of supported hardware platforms
restricts all of those tools. They are purposed mainly for
learning and education in robotics. It affects the aspects of
theirs visual approach. The figures below illustrates that the
main accent of these environments is set to colorfulness,
scheme simplifying and effectiveness of small programs
representation. When programs come to significant

functionality and large size, the effectiveness of an
implemented approach is lowering drastically.

A) [——)) —) :) -
Pl O aelgt@ N __’rrx____@nl "‘-1-': s _1_.-.“3 39yl O auf
gl @ et ||l ek | Ladkel | e ek (ol
bd. I I 1 1 5
slie 20w e sla pBla 2B p2a '
Fig.1. Mindstorms environment
3 (cadz] | Untitled Project T
5 @'— ﬁ i I I] l.b|-‘]
Diaveling -

- buttonPressed LIRS 4

Fig.2. Modkit environment

ISSN 2305-7254

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

AeyuepHan doseie.

e |

A BN

R T

9

el

®

[le »
Uessr: convan o]

Mo vme M3
Muuwneh lslnna Mg

Fig.3. TRIK Studio environment

Mizprres My Jame g bk 1000

e (50

The visual approach is supported by major players of a
software market, such as Mathworks (Simulink, [5]),
Microsoft (Microsoft Robotics Developer Studio, MRDS,
[6]) and National Instruments (LabVIEW, [7]). All of these
systems are essentially similar, and have similar key
drawbacks from the point of embedded microcontrollers
programming. Firstly, it is limited support of
microcontroller platforms and closed nature of these
systems: only system owners can develop the support of
new microcontrollers. Secondly, lack of convenient ways
for creation of domain-specific languages or libraries. For
example, MRDS is suited for robots programming, which
lowers its effectiveness in a programming of tasks that
differs from robotic control systems. Simulink is more
suited for dynamic systems design. LabVIEW is generally
suited for creating virtual instruments and so on. As a result,
when working with other domains development, an
efficiency decreases.

The visual interactive developing environment VIPE is
intended for an algorithms design and programming in
various data processing domains. VIPE technologies are
based on coarse-grained visual approach, which allows
separating design and programming processes. A task
developer designs the structure of blocks and determines
their interaction with each other without thinking on a
particular implementation of each block. The programmer
write the code of each block directly without thinking on a
structure of the entire software complex. Detailed
description of this approach is presented in [8]. In addition,
VIPE provides support for the development of visual
domain-specific languages [9].

During the VIPE development, the main exploitation was
performed in data processing domains. To review the scope
and breadth of an application, this paper presents the process
of applying the technology to a microcontrollers
programming domain. The process includes the creation of

180

DSL for one of the most popular platform for non-industrial
microcontrollers — Arduino, ensuring the execution of
program schemes on the hardware platform, and use cases
of programs development with the designed tools.

At the end of the paper we will review the perspectives
and methods of DSL and tools universalization to support
larger number of controllers from other manufacturers, and
ensuring the portability of developed program schemes.

II. DEVELOPMENT OF DOMAIN-SPECIFIC LANGUAGE FOR

ARDUINO PLATFORM

A. Domain analysis

The first stage of work with a new domain — the design of
domain-specific language. “Piggyback” method is used for
DSL design in the considered technology. According to this
method, host language constructions are enhanced with new
domain-specific constructions. This and other methods of a
language design are discussed in [9].

We performed the domain analysis. Arduino platform is
based on AVR ATmega microcontrollers by Atmel [10, 11].
In addition to the microcontroller itself, the platform
includes basic peripherals, such as digital and analog 1/0
ports. The analysis has shown that in addition to the basic
environment for programming ATmega microcontrollers,
extended software toolset has been created for the Arduino
platform. So, the specifics of an Arduino platform
programming is already reflected in the basic Arduino text
programming language (C/C++ based).

The basis of a DSL design is:

e basic constructions of a text language;

functions for working with embedded peripherals;
functions for working with the popular external
peripherals (actuators, proximity sensors, light
sensors, accelerometers, etc.).

B. Constants

The Arduino software toolset includes the number of
named constants. They are not obligatory for DSL, but they
are familiar to Arduino developers. The main constants, for
example, HIGH and LOW, that specifies values for digital
I/O, are put into the VIPE constants table. This table is
available from any place in a program.

C. Language elements

Base control structures (conditions, cycles and so on) are
already presented in the host VPL language. Arithmetic and
logic operations are contained in the base VPL libraries and
do not require an additional inclusion in the developing
DSL.

Arduino functions are grouped around entities with which
they are interacting.

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

The main function group is working directly with
Arduino board. This group includes the function pinMode,
which is responsible for setting the port as input or output. A
language element was established for this function (Fig.4).
In addition, language elements were created for other typical
operations directly on the board: setting a port voltage level,
reading a voltage value from a microcontrollers’ pin,
working with a timer, delay functions, working with COM-
port etc.

- . A
_ Digital Digital
PinMode Read '_—ﬂ e '—
- -

F'y

Fig.4. pinMode, digitalRead, digital Write functions

To provide the operation of plug-in peripheral modules it
was necessary to provide elements to work with their
libraries. Actuators, ultrasonic sensors, accelerometers and
some other devices were chosen as primary devices.

Language elements for servo library were created to
allow working with actuators. Elements of sensor
initialization and range estimation were created for working
with ultrasonic sensor. Elements for working with a display,
functions of getting and processing values from
accelerometers and gyroscopes were also created.

As a result, 28 language elements were specified,
including the elements to initialize contacts, a servo control
and other modules. Together, they forms a new DSL for
Arduino (Fig.5).

» | arduino
PinMode DigitalWrite DigitalRead
BeginWire AnalogWrite AnalogRead
Servoéttach InitServo Delay
CurrentTime ServoWrite AdafruitInit
AdafruitBegin AdafruitClear AdafruitDisplz
AdafruitPrinth AdafruitSetCu AdafruitSetCe
AdafruitSetTe commentary L3G4200DIni
L3G4200DGel arduinolL3G4:2 ADXL345Gety
ADXL345Init L3G4200DCre SerialAvailabl
SerialReadInt SerialBegin

Fig.5. Arduino visual DSL library

Definitely, the developed DSL is not full, because the
Arduino platform has lot of external devices developed for
it. Moreover, the DSL does not include any data processing
functions. The considered technology is open for DSL
design and developed language can be easily extended in
future by any person.

181

D. Target platform support

The technology of code generation allows working with a
target platform. This technology is presented in details in
[8]. It is important to notice that a target platform support is
not necessary directly for programming with the DSL. It is
possible to start working on an application software and
develop a target platform support concurrently, lowering the
time to market for new products.

Since the Arduino platform toolkit uses C/C ++ with
some extensions, the development of a new code generator
is not required. We can use the basic C/C ++ code generator,
supplied with the toolset of considered technology.

To ensure the functioning of a new DSL, it is necessary
to develop function templates that implement elements of
the language. The template mechanism that is implemented
in the proposed technology allows attaching the textual
function implementations, written in the target platform
language (in our case - C/C++) to the graphical DSL
elements.

The main group of platform functions has direct
prototypes in Arduino software toolset functions. For these
functions, the templates will be just wrappers on existing
functions. Here are the examples of templates for pinMode
(Fig.0), digitalRead (Fig.7) and millis (Fig.8).

Open Save Save As.. Generate params

i

int

arduinoPinM(Datalink* inP1, DatalLink* inM1

b (

int pin = ReadInteger(inP1);
int mode= ReadInteger(inMl);
pinMode(pin, mode);

return 8;

Fig.6. Template for pinMode function

Open Save Save As.. Generate params

f/

int |arduinoDigi (|DataLink* inP1, Datalink* outvi

i «

int pin= ReadInteger(inP1);
int val= digitalRead(pin);
WriteInteger(outVl,val);
return 8;

Fig.7. Template for digitalRead function

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

=5 millis.tn - Template editor i
Open Save Save As.. Generate params i

£ J{

int |arduinomillis|(DataLink® outTi1)

{
int cur_time = millis();
WriteInteger(outTl, cur_time);
return 6;

}

Fig.8. Template for millis function

To provide operations with plug-in modules it is
necessary to develop an interaction with their libraries and
data processing functions. For example, data obtaining
function arduinoADXL345GetValues (Fig.9) and data
processing function arduinoKallmanTranslateAngle (Fig.10)
were created to work with accelerometers and gyroscopes.
First one gets data from module and the second one
performs raw values transformation to obtain angle values.

arduinoADX1345GetValuesin - Template editor — B

Open Save Save As.. Generate params

H

int |arduinoADXL3:{(|DataLink* inAl, DataLink* outX1,Dats)
{
| int* p;
ADXL345 *myaccel;
int16_t ax, ay, az;

memcpy (&p, inAl-»>Data, sizeof(int*));
myaccel = (ADXL345%)p;

myaccel->getAcceleration(&ax, &ay, &az);
WriteInteger(outXl, (int)ax);
WriteInteger(outYl, (int)ay);
WriteInteger(outZl, (int)az);

return 8;

}

Fig.9. Template for arduinoADXL345GetValues

arduinoKallmanTranslateAngletn - Templatee.. — O

Open Save Save As.. Generate params

.";),r

int |arduinoKallmi{ Datalink* inl1, Datalink* in21, Dats)
{

int* p;
Kalman *myKalman;
int first_angle, second_angle, third_angle;

memcpy (&p, inll->»Data, sizeof(int*));
myKalman = (Kalman*)p;

first_angle = ReadInteger{in21);
second_angle = ReadInfteger(in31);
third_angle = ReadInteger(indl);

WriteInteger(out5l, (int)myKalman->Translate
((float)first_angle, (float)second_angle, (float)
third_angle)):

return @;

i

Fig.10. Template for arduinoKallmanTranslateAngle

Templates for all 28 elements of the DSL have been
implemented in the similar way.

E. Program structure

The analysis of a program structure requires a special
attention. Unlike the classic C/C++, a text program for
Arduino contains two main functions: setup() and loop().
The first one, setup(), is performed only once. It is intended
for specifying the initial configuration of a board, 1/O,
connected modules and so on. The loop() function is
executed iteratively and contains the main program, which
implements the core functionality.

The constructs of the host VPL language are enough to
represent an overall structure of the program (Fig.11). The
structural operator Complex will be used for the setup()
structure. It ensures the single execution and can include
other operators. The loop operator While will be used for the
loop() structure, providing an endless iterative execution.
The While operator also can include other operators.

L
Loop

Setup —»)

Fig.11. Program structure in VIPE

III. APPLICATION OF ARDUINO DSL

As a use-case for developed DSL for Arduino the task of
an automated control of a radio-controlled vehicle model
has been selected.

Arduino platform with the ultrasonic sensor was installed
on COTS radio-controlled model (Fig.12).

Fig.12. Radio-controlled model with the Arduino microcontroller

The model is controlled manually from the control panel.
Arduino monitors the area in front of the vehicle with an
ultrasonic sensor. In the case of detecting an obstacle,
Arduino blocks the control of acceleration and enforces the
emergency brake to avoid a collision.

A. Visual program structure

The common view of the control system program is
shown on the Fig.13.

1
1 ». Ultrasonic -
. " class
Setup . [V
¢ Sonic Main
LU time pr‘ogram
oop
¢ Forward _j
L2 state T
4 Back 1
Low{ state "I
LOW [Right >
state
Low (- - =T
state |

Fig.13. A general view of control system scheme

All necessary functions to configure a platform (Fig.14)
is placed in the Setup block: ports configuration, proximity
sensor initializing and so on.

Forwardout BackOut Leftout RightOut Forwardin Eackin Leftin Rightin
PinMade PinMode PinMode PinMode PinMode PnMode PinMode PinMade
i T - i v v v .
OUTPUT OUTPUT OUTPUT OUTPUT INPUT INPUT INPUT INPUT

Turn wheels on startup
SenicTrg | RightOut| so0 | Rightout |
1 1 1 I
Init ultrasonic ———sjuitrasonic Digital Digital
§ L
T write | ri, ! write
SonicEchd L B

HIGH |

Fig.14. Setup block structure

The main part of the control system (Fig.15) is placed in
the infinite loop block “Main program loop”.

It can be easily seen on the Fig.15 that base constructions
of VPL language, such as structural operators, conditional
operators, constants and virtual nodes — are used for
structuring the program and for miscellaneous operations.

In addition, elements of the host language and base
libraries are used to organize common computations and
data processing (Fig.16).

183

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

13
»| Spl [—» Cond
o~

= -1 - nothing
LOW - off
HIGH - on
& 6
Forw. ¢ Forw.
state stafe
5]
LOW - off @ 5 . B:xk
HIGH - on £% —) 2
state " stgre
<
‘ B0 B @
?;;g?}]‘ Read N - Form . " Make
ik control f— L control ——»@—» control
—E)
Left 4
state "
Right ;
state "
7
| Sonic
, L Ttimeof M tige
Control: look o Sonic: N next scan =~
for barrier ti?::] > check and
and break scan Has

| barrier

Do
break
Fig.15. The main scheme for vehicle model control
| spl ¢ F *
{ Check
x=(f==1)&&(b==1) | wh S
‘l F
| spl @ B ‘r
Fig.16. The scheme with computations
The interaction with domain-specific aspects is
performed by using the DSL elements (Fig.17).
ForwardIn | v
Digital |
read |
ForwardOut | v ¥
':?:i' { BrakeTime | ! T.‘E:‘:'
v
owi -+ ‘ . ' Forwardout 4
1 Delay :_
Backout | "] BackOut v
/—" Digital ¢ 1 oigitas
write write
Backin | ¥
ogtal HigHl - * 1
read v

Fig.17. The scheme with DSL blocks

B. Deployment to target platform

A target platform code was generated for the developed
scheme using templates of base VPL libraries and Arduino
DSL. The generated code is fully compatible with the

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

toolset provided with the Arduino platform. The code has
been successfully compiled, uploaded to the platform and
correctly executed.

Compiling of a binary file and its loading to the platform
was integrated directly into VIPE development environment
for the convenience of developers (Fig.18). Thus, the
developers are fully freed from the necessity to interact with
several tools, such as a compiler, loader, Arduino
development environment etc. They work within the single
visual environment VIPE.

Fig.18. Integration of Arduino tools calling in VIPE

It should be noted that the size of a generated code is
quite large. It is 45Kb against 4Kb of the manually written
code. It is a consequence of two aspects. Firstly, the code
generator and templates structure are tailored for coarse-
grained approach. For medium-grained and fine-grained
Arduino schemes, a service code is an essential part of the
final text of the program. Secondly, the schemes and
generated code are focused on a parallel execution (Fig.19),
which is not required for single core microcontrollers.

Forw.
state »| Compare

i and ——) spl | .
F 4 » form F - L, {
X (fm = 1)BA{b= = 1) J Check
Back [___§ n {
stata = Compare T l‘l
' and — spl b -
8 * form®B
Left
state = Compare 1 t
and —*} Spl 4l—l 1
L » formL = |
L4 1
Check *
x=(l==1)88(r==1) | \&r A
. 0
Right - - |
state = Compare - } “
N and ——=) spl | -
R »| form R

Fig.19. Parallel program scheme

The solutions for a generated code size optimization are
under development and will be introduced in the nearest
future.

IV. RESULTS AND FUTHER PLANS

The DSL for Arduino platform has been developed
within the technology of DSL creation [8] and with the
instruments of integrated environment VIPE. The control
system was successfully ported to the target hardware
platform using the ready tools of the considered technology.

The development experience has shown that the
considered approach and technology supporting tools
provide fast, effective and low-cost way to design new
DSLs for new application domains. Technology
mechanisms allow extending existing DSL with new
elements if it is required. The usage of the created DSL
allows designing programs within this domain with a use of
the visual medium-grained approach. The integrated
software complex provides the uniform environment,
freeing from the use of several separate tools. In this way it
was achieved the ability to program microcontrollers in
terms familiar to the user, making the possibility of creating
schemes for Arduino even easier. It significantly expands
the opportunity to realize ideas on the Arduino board for
people who are not skilled microcontroller programmers.

An important feature of the proposed approach is the
possibility of developing a portable software. Adaptation
methods for code generators and templates should provide a
portability of developed schemes to multiple target
hardware platforms.

We have analyzed other microcontroller hardware
platforms that are close to the Arduino platform. The main
players in this field are companies like FreeScale and STM
(FRDM-KL25Z [12] and STM32F10X [13] platforms based
on ARM Cortex MO+ processors) and Intel (Galileo
platform [14] based on Intel Quark SoC X1000 processor).

The exploration showed that the developed DSL could
not be effectively applied for porting programs to other
microcontroller platforms. It was found that during the
development of the DSL a significant drawback was made
at the domain analysis phase. The domain is the
programming of control systems based on microcontrollers.
During the development of the DSL, this area was
erroneously narrowed to the task of programming Arduino
platform. As a result, developed DSL reflects the Arduino
platform aspects too detailed.

In the nearest future, the developed DSL will be
significantly revised. The identified shortcomings will be
addressed and the work on the portability of program
schemes will be continued.

Flexibility of the VIPE and the domain-specific
programming technology allows using them not just for
microcontrollers, but also for various application areas:
smart systems, telecommunications, and so on.

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of Russian
Federation under agreement n°14.575.21.0021, identifier
RFMEFI57514X0021.

(1]

[2]
[3]

(4]

(3]

REFERENCES

Joachim Booth, Tracey, and Simone Stumpf, End-user
experiences of visual and textual programming environments for
Arduino. End-User Development. Springer Berlin Heidelberg.
Rollins, Mark, Beginning Lego Mindstorms Ev3. Apress, 2014.
Millner, Amon, and Edward Baafi, “Modkit: blending and
extending approachable platforms for creating computer
programs and interactive objects”, Proceedings of the 10th
International Conference on Interaction Design and Children.
ACM, 2011.

Terehov A.N., Litvinov Y.V., Briskin T.A, “Environment for
teaching informatics and robotics QReal:Robots”, 9-th
independent conference «Software deveopment 2013» (CEE
SEC(R)-2013), 2013.

Gartseev, Ilya B., Leng-Feng Lee, and Venkat N. Krovi, “A low-
cost real-time mobile robot platform (ArEduBot) to support
project-based learning in robotics & mechatronics”, Proceedings
of 2nd International Conference on Robotics in Education (RIE
2011), R. Stelzer and K. Jafarmadar, Eds. INNOC Austrian
Society for Innovative Computer Sciences, 2011.

185

(6]
(71

(8]

(9]

[13]

[14]

Johns, Kyle, and Trevor Taylor, Professional microsoft robotics
developer studio. John Wiley & Sons, 2009.

Travis, Jeffrey, and Jim Kring, LabVIEW for Everyone:
Graphical Programming Made Easy and Fun (National
Instruments Virtual Instrumentation Series). Prentice Hall PTR,
2006.

Boris Sedov, Alexey Syschikov, Vera Ivanova, “Technology and
Design Tools for Portable Software Development for Embedded
Systems”. Proceedings of the 16th Conference of Open
Innovations Association FRUCT printed by “University
Telecommunications” Company, 2014, pp. 86-93.

Vera Ivanova, Boris Sedov, Yuriy Sheynin, Alexey Syschikov,
“Domain-Specific Languages for Embedded Systems Portable
Software Development”. Proceedings of the 16th Conference of
Open Innovations Association FRUCT printed by “University
Telecommunications” Company, 2014, pp. 24-30.

Atmel official website, Web: http://www.atmel.com/

Barnett, Richard, Sarah Cox, and Larry O'Cull, Embedded C
programming and the Atmel AVR. Cengage Learning, 2006.

Tadi, Mojtaba Jafari, et al, “Accelerometer-Based method for
extracting respiratory and cardiac gating information for dual
gating during nuclear medicine imaging”, Journal of Biomedical
Imaging, 2014.

KU, Shao-ping, and Jing LIU, “Design of the Control Systems of
Stepping Motor Based on STM32F10x and MDK [J]”, Journal of
Wuhan University of Technology 3, 2009.

Ramon, Manoel Carlos, ”Intel Galileo and Intel Galileo Gen
27, Intel® Galileo and Intel® Galileo Gen 2 Apress, 2014,
pp 1-33.

